ctDNA detection - Digital PCR

28 MARCH 2022

TENNA VESTERMAN HENRIKSEN PHD STUDENT

DIGITAL PCR

		1		
Bio-Rad	RainDance	Stilla	ThermoFisher	Qiagen
QX200	RainDrop	Naica	QuanStudio	QiAcuity
2 (6)	2	6	4	5
Droplet emulsion	Droplet emulsion	Droplet lattice	Micro- chambers	Micro- chambers
~20,000	~1,000,000	15,000-30,000	20,480	26,000
	Bio-Rad QX200 2 (6) Droplet emulsion ~20,000	Bio-RadRainDanceQX200RainDrop2 (6)2DropletDropletemulsionemulsion~20,000~1,000,000	Bio-RadRainDanceStillaQX200RainDropNaica2 (6)26Droplet emulsionDroplet emulsionDroplet lattice~20,000~1,000,00015,000-30,000	Bio-RadRainDanceStillaThermoFisherQX200RainDropNaicaQuanStudio2 (6)264Droplet emulsionDroplet latticeMicro- chambers~20,000~1,000,00015,000-30,00020,480

EXAMPLE 1

Dilution of tumor DNA in constant WT background

	Dilutions				Controls			
	A	В	С	D	E	Neg	NTC	Pos
Tumor	100	50	25	13	6	0	0	100
WT	5000	5000	5000	5000	5000	150	0	150
AF(%)	2%	1%	0.5%	0.25%	0.13%	0%	-	40%

EXAMPLE 2

Plasma DNA from colorectal cancer patient

- Before surgery
- After surgery

EXAMPLE 2

UNIVERSITY

DEPARTMENT OF CLINICAL MEDICINE

	Before OP	After OP
#Droplets (Mut/WT)	7/10,546	0/24,938
#Copies (Mut/WT)	7/11,652	0/29,988
AF (%)	0.064%	0%
ctDNA call	Positive	Negative

28 MARCH 2022

TENNA VESTERMAN HENRIKSEN PHD STUDENT

SUBSAMPLING

28 MARCH 2022 PH

TENNA VESTERMAN HENRIKSEN 2022 PHD STUDENT

Targets

- Single-nucleotide variants (SNVs)
 - Pro: Easy to design
 - Con: Only 1 base to differentiate Mut and WT
- Methylation patterns
 - Pro: Many differentiating positions
 - Con: Requires conversion (bisulfite/enzymatic)
- Large genomic variations (GV)
 - Pro: No PCR amplicon if no GV = Highly specific
 - Con: Difficult to determine breakpoints

Assay design

Single-plex

- Duplex
- Multiplex
 - Multiple colors
 - Different amplitudes

• Different amplitudes

• Different amplitudes

Assay design

- Single-plex
- Duplex

• Multiplex

- Multiple colors
- Different amplitudes

a. KRAS multiplex #1

Rowlands et al., *Optimisation of robust singleplex and multiplex droplet digital PCR assays for high confidence mutation detection in circulating tumour DNA*, Scientific Reports, 2019 Figure 9A, Droplet Digital PCR (Bio-Rad)

WHY MULTIPLEX?

- 1. Select target
- 2. Optimize assay
 - Primer/probe concentration
 - PCR conditions
- 3. Estimate background noise
- 4. Plasma analysis

- 1. Select target
- 2. Optimize assay
 - Primer/probe concentration
 - PCR conditions
- 3. Estimate background noise
- 4. Plasma analysis

Residual disease detection

Recurrent target

Tracking resistance

1. Select target

- 2. Optimize assay
 - Primer/probe concentration
 - PCR conditions
- 3. Estimate background noise
- 4. Plasma analysis

1. Select target

- 2. Optimize assay
 - Primer/probe concentration
 - PCR conditions
- 3. Estimate background noise
- 4. Plasma analysis

28 MARCH 2022

PHD STUDENT

- 1. Select target
- 2. Optimize assay
 - Primer/probe concentration
 - PCR conditions
- 3. Estimate background noise
- 4. Plasma analysis

28 MARCH 2022 PH

2 PHD STUDENT

TENNA VESTERMAN HENRIKSEN

Henriksen et al., Error Characterization and Statistical Modeling Improves Circulating Tumor DNA Detection by Droplet Digital PCR, Clinical Chemistry, 2022

Henriksen et al., Error Characterization and Statistical Modeling Improves Circulating Tumor DNA Detection by Droplet Digital PCR, Clinical Chemistry, 2022

TENNA VESTERMAN HENRIKSEN PHD STUDENT

Henriksen et al., Error Characterization and Statistical Modeling Improves Circulating Tumor DNA Detection by Droplet Digital PCR, Clinical Chemistry, 2022

1. Select target

2. Optimize assay

- Primer/probe concentration
- PCR conditions

3. Estimate background noise

4. Plasma analysis

- 1. Select target
- 2. Optimize assay
 - Primer/probe concentration
 - PCR conditions
- 3. Estimate background noise
- 4. Plasma analysis

SAMPLE CALLING

SAMPLE CALLING

Henriksen et al., Error Characterization and Statistical Modeling Improves Circulating Tumor DNA Detection by Droplet Digital PCR, Clinical Chemistry, 2022

TENNA VESTERMAN HENRIKSEN PHD STUDENT NN 460

SAMPLE CALLING

Train on non-mutated samples \rightarrow expected noise profile

Account for DNA-input concentration \rightarrow high input = more noise

WHY (NOT) dPCR?

Chakrabarti et al., *The Promise of Circulating Tumor DNA (ctDNA) in the Management of Early-Stage Colon Cancer: A Critical Review*, Cancers, 2020

WRAP UP

